aromatic-L-amino-acid decarboxylase | |||||||
---|---|---|---|---|---|---|---|
Ribbon diagram of a domestic pig DOPA decarboxylase dimer.[1] | |||||||
Identifiers | |||||||
EC number | 4.1.1.28 | ||||||
CAS number | 9042-64-2 | ||||||
Databases | |||||||
IntEnz | IntEnz view | ||||||
BRENDA | BRENDA entry | ||||||
ExPASy | NiceZyme view | ||||||
KEGG | KEGG entry | ||||||
MetaCyc | metabolic pathway | ||||||
PRIAM | profile | ||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||
Gene Ontology | AmiGO / EGO | ||||||
|
DOPA decarboxylase (aromatic L-amino acid decarboxylase) | |
---|---|
Identifiers | |
Symbol | DDC |
Entrez | 1644 |
HUGO | 2719 |
OMIM | 107930 |
RefSeq | NM_000790 |
UniProt | P20711 |
Other data | |
EC number | 4.1.1.28 |
Locus | Chr. 7 p11 |
Aromatic L-amino acid decarboxylase (EC 4.1.1.28, synonyms: DOPA decarboxylase, tryptophan decarboxylase, 5-hydroxytryptophan decarboxylase, AAAD) is a lyase enzyme.
Contents |
It catalyzes several different decarboxylation reactions:
The enzyme uses pyridoxal phosphate, the active form of vitamin B6, as a cofactor.
In normal dopamine and serotonin (5-HT) neurotransmitter synthesis, AAAD is not the rate-limiting step in either reaction. However, AAAD becomes the rate-limiting step of dopamine synthesis in patients treated with L-DOPA (such as in Parkinson's Disease), and the rate-limiting step of serotonin synthesis in people treated with 5-HTP (such as in mild depression or dysthymia). AAAD is inhibited by Carbidopa outside of the blood brain barrier to inhibit the premature conversion of L-DOPA to Dopamine in the treatment of Parkinson's.
AAAD is the rate-limiting enzyme in the formation of biogenic trace amines.
Click on genes, proteins and metabolites below to link to respective articles. [2]
The gene encoding the enzyme is referred to as DDC and located on chromosome 7 in humans.[3] Single nucleotide polymorphisms and other gene variations have been investigated in relation to neuropsychiatric disorders, e.g., a one-base pair deletion at –601 and a four-base pair deletion at 722–725 in exon 1 in relation to bipolar disorder[4] and autism.[5]
|
|